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Rcho-1 Trophoblast Stem Cells
A Model System for Studying Trophoblast Cell Differentiation

Namita Sahgal, Lindsey N. Canham, Brent Canham,
and Michael J. Soares

Summary
The biology of trophoblast cell development can be investigated using in vitro model sys-

tems. The Rcho-1 trophoblast stem cell line was derived from a rat choriocarcinoma and is an
effective tool for elucidating regulatory mechanisms controlling trophoblast cell differentia-
tion. In this chapter, we describe methods used in the maintenance and manipulation of the
Rcho-1 trophoblast cell line.

Key Words: Trophoblast differentiation; rat placenta; trophoblast giant cells; Rcho-1 tro-
phoblast stem cells; choriocarcinoma.

1. Introduction
Trophoblast cells possess specialized phenotypes and arise from a common

stem cell population directed along a multi-lineage differentiation pathway (1).
Trophoblast stem cells develop from the blastocyst and are maintained by sig-
nals emanating from the inner cell mass (2,3). In the rat, trophoblast stem cells
can be directed toward at least five recognizable differentiated trophoblast cell
phenotypes: trophoblast giant cells, spongiotrophoblast cells, invasive tropho-
blast cells, glycogen cells, and syncytial trophoblast (Fig. 1) (4,5). Differenti-
ated trophoblast cell populations can be distinguished on the basis of
morphology, location, and patterns of gene expression. These cell types are
arranged into two distinct zones of the chorioallantoic placenta—the junctional
zone and the labyrinth zone—and contribute to a complex uteroplacental struc-
ture prominent during the last week of gestation, the metrial gland (Fig. 1).
Each differentiated cell lineage specializes in activities supportive of preg-
nancy, some of which are well established whereas others are the source of
both speculation and ongoing investigation. Some specific trophoblast func-
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tions include remodeling uterine vasculature, hormone/cytokine production,
energy storage, and transcellular transport. The normal growth and differentia-
tion of trophoblast cells is crucial for the establishment and maintenance of
pregnancy.

Insights about placental development have been derived from the genera-
tion of mutant mice by gene targeting (6) and through the use of cell culture
models. The latter efforts have been primarily based on two in vitro systems:
blastocyst-derived trophoblast stem cell lines (2) and trophoblast stem cell lines
derived from a rat choriocarcinoma (7–9). The choriocarcinoma derived cell
lines are remarkable in their ability to differentiate into trophoblast pheno-
types.

More than two decades ago, Dr. Shinichi Teshima and his colleagues at the
National Cancer Institute (Tokyo, Japan) induced a transplantable rat chorio-
carcinoma with extraordinary features (7). Initial observations suggested the
trophoblast tumor contained trophoblast giant cells and produced lactogenic
hormones (7,10,11). Subsequently, trophoblast stem cell lines were established
from the same choriocarcinoma by Dr. Michel Vandeputte’s laboratory at the
University of Leuven (Leuven, Belgium) (8) and by our laboratory (9). The
cell line derived by Dr. Vandeputte and colleagues is termed RCHO, while we
refer to our trophoblast stem cell line as Rcho-1. These trophoblast stem cell
lines are aneuploid, are easy to maintain and expand, and possess the capacity
to differentiate in vitro and in vivo into trophoblast giant cells.

RCHO and Rcho-1 trophoblast stem cell lines have become part of the
experimental arsenal for studying trophoblast cell biology (Table 1). These
trophoblast stem cell lines have been used to investigate the regulation of tro-
phoblast cell cycle (12–15), the regulation of trophoblast cell differentiation
(8,9,16–32), the trophoblast cell phenotype (33–47), trophoblast cell-specific
transcriptional regulation (48–67), trophoblast cell transport processes (68–
72), trophoblast cell DNA methylation (73,74), trophoblast cell invasion
(19,75), and trophoblast tumor development (76,77).

The merit of the RCHO and Rcho-1 trophoblast stem cell models is their
plasticity. These cells can be maintained under conditions that facilitate prolif-
eration, or the culture conditions can be changed to promote robust differentia-
tion. Thus, relatively homogenous populations of proliferating and
differentiating trophoblast cells can be retrieved from the cultures. The most
prominent differentiated phenotype observed in RCHO and Rcho-1 tropho-
blast stem cell cultures is the trophoblast giant cell (7,8). This differentiated
phenotype is easy to track by monitoring cell morphology (large nucleus) or a
variety of functional endpoints. The trophoblast giant cell phenotype is also
the most common direction for in vitro differentiation of blastocyst-derived
trophoblast stem cells (2). Differentiation toward other trophoblast cell pheno-
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types is possible, but is not optimal using classic monolayer culture practices
(Canham, L. N. and Soares, M. J., unpublished results).

Cancer cells, such as those represented by the RCHO and Rcho-1 tropho-
blast stem cell lines, are caricatures of normal development and represent
potentially important models for dissecting molecular mechanisms control-
ling differentiation (78). The key is in identifying and appreciating which regu-
latory pathways are characteristic of normal development and which are
associated with the transformed phenotype. Thus, it is imperative to perform
complementary experimentation using primary cultures of trophoblast cells and
in vivo models.

In this chapter, we describe methods developed in our laboratory for using
the Rcho-1 trophoblast stem cell model to study various aspects of trophoblast
cell biology.

2. Materials
1. Culture media:

a. Standard Growth Medium: RPMI-1640 culture medium (Mediatech Cellgro,
Herdon, VA) containing 50 µM 2-mercaptoethanol (Bio-Rad Laboratories,
Hercules, CA), 1 mM sodium pyruvate (Sigma Chemical Co., St. Louis,
MO), 100 µg/mL penicillin, and 100 U/mL streptomycin (Mediatech
Cellgro), and 20% heat-inactivated fetal bovine serum (FBS, Altanta
Biologicals, Norcross, GA).

b. Standard Differentiation Medium-Type I: NCTC-135 culture medium
(Sigma) containing 50 µM 2-mercaptoethanol (Bio-Rad), 1 mM sodium pyru-
vate (Sigma), 100 µg/mL penicillin and 100 units/mL streptomycin
(Mediatech Cellgro), and 1–10% heat-inactivated donor horse serum (HS;
Atlanta Biologicals).

Table 1
Rcho-1 Trophoblast Stem Cell Line Applications for Studying Trophoblast
Cell Biology

Trophoblast cellular process References

Regulation of cell cycle regulation 12–15
Regulation of cell differentiation 8,9,16-32
Characterization of trophoblast cell phenotypes 33–47
Trophoblast cell-specific gene transcription 48–67
Cell transport processes 68–72
DNA methylation 73,74
Cell invasion 19,75
Trophoblast tumor development 76,77
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c. Standard Differentiation Medium-Type II: RPMI-1640 culture medium
(Mediatech Cellgro) containing 50 µM 2-mercaptoethanol (Bio-Rad), 1 mM
sodium pyruvate (Sigma), 100 µg/mL penicillin and 100 U/mL streptomycin
(Mediatech Cellgro), and 1% heat-inactivated donor HS (Atlanta Biologicals).

2. Hank’s balanced salt solution (HBSS; Sigma).
3. Cell Dissociation Medium: Trypsin-ethylenediamine tetraacetic acid (EDTA)

Solution (0.25% Trypsin/0.1% EDTA in HBSS) (Mediatech Cellgro).
4. Cell Freezing and Storage Medium: Standard Growth Medium containing 10%

dimethylsulfoxide (Sigma) and an additional 25% FBS (Atlanta Biologicals).
5. Cryovials (2-mL, Nalge Company, Rochester, NY).
6. StrataCooler® Cryopreservation Module (Stratagene, La Jolla, CA).
7. Phosphate-buffered saline (PBS).
8. Crystal Violet Solution: 5% formalin, 50% ethanol, 150 mM NaCl, and 0.5%

crystal violet (Sigma).
9. TRIzol reagent (Invitrogen Life Technologies, Carlsbad, CA).

10. 1% Formaldehyde-agarose gels. Formaldehyde (Fisher Scientific, Pittsburgh,
PA); agarose (Sigma).

11. Nylon membranes (Nytran Super Charge, Schleicher & Schuell Biosciences, Inc.,
Keene, NH).

12. Crosslinker (Model XL-1000, Spectronics Corporation, Westbury, NY).
13. [α-P32]dCTP (Perkin Elmer, Boston, MA).
14. cDNAs and polyclonal antibodies for monitoring proliferating and differentiat-

ing trophoblast cells (Tables 2 and 3).
15. Androstenedione and progesterone radioimmunoassay kits (Diagnostic Products

Corporation , Los Angeles, CA).
16. Extracellular matrix-coated BioCoat® Matrigel™ Invasion chambers (BD Bio-

sciences, Bedford, MA).
17. Diff-Quick stain for cells (Allegiance Scientific Products, McGaw Park, IL).
18. Lipofectamine reagent and OPTI-MEM Reduced Serum culture medium

(Invitrogen Life Technologies).
19. Geneticin (Sigma) is prepared as a 40X stock solution (10 mg/mL) in HBSS

(Sigma) and stored at 4°C.
20. Holtzman Sprague-Dawley rats are obtained from Harlan Sprague-Dawley (In-

dianapolis, IN).

3. Methods
3.1. Routine Maintenance and Expansion of Rcho-1 Trophoblast Stem
Cells

1. Rcho-1 trophoblast cells are routinely maintained in 75-cm2 flasks in Growth
Medium, in an atmosphere of 5% CO2/95% air at 37°C in a humidified incuba-
tor. Cells are grown under subconfluent conditions. Initially, cells are plated at
1–2 × 106 cells per flask and fed at two day intervals (see Notes 1–3).
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Table 2
Genes Expressed in Proliferating Rcho-1 Trophoblast Stem Cells

Gene Functional group GenBank accession no. References

Cdx2 Transcription AJ278466 unpublisheda

Eomes Transcription AY457971 unpublisheda

Id-1 Transcription L23148 17 and unpublisheda,b

Mash2 Transcription X53724 17 and unpublisheda

SOCS 3 Signal transduction AF075383 32 and unpublisheda

Cyclin D3 Cell cycle D16309 14 and unpublishedb

Abbreviations: Eomes, Eomesodermin; Id-1, Inhibitor of DNA binding 1; Mash, mammalian
achaete schute; SOCS3, suppressor of cytokine signaling 3.

aSahgal, N., Canham, L. N., and Soares, M. J., unpublished results.
bCanham, L. N., Sahgal, N., and Soares, M. J., unpublished results.

Table 3
Trophoblast Giant Cell-Associated Genes Expressed in Differentiating Rcho-1
Trophoblast Cellsa

GenBank Antibodies: source
Gene accession no.  (cat. no.) References

PRL family

PL-I D21103 Chemicon International, 9,13,26,38,44
Temecula, CA (AB1288)

PL-II M13749 Chemicon (AB1289) 9,13,26,38,44
PLP-A NM_017036 Chemicon (AB1290) 9,13,44
PLP-Fα NM_022530 None currently available 42,44
PLP-M NM_053791 None currently available 44

Steroidogenic regulators

P450scc J05156 Chemicon (AB1244, AB1294) 35,36
3β-HSD L17138 None currently available Unpublishedb

P450c17 NM_012753 See references 37

Others

PSG36 M32474 None currently available Unpublishedb

HAND1 NM_021592 Santa Cruz Biotechnology, 17 and unpublishedc

Santa Cruz, CA (sc-9413)

Abbreviations: PRL, prolactin; PL, placental lactogen, PLP, prolactin-like protein; P450scc, side
chain cleavage; P450c17, 17α hydroxylase; 3βHSD, 3β hydroxysteroid dehydrogenase; PSG, preg-
nancy specific glycoprotein.

aThis list of genes reflects the trophoblast giant cell phenotype of the differentiating Rcho-1 tro-
phoblast stem cells.

bCanham, L. N., Sahgal, N., and Soares, M. J., unpublished results.
cSahgal, N., Canham, L. N., and Soares, M. J., unpublished results.

13_Sahgal_159_178_F 8/29/05, 11:19 AM164



Studying Trophoblast Cell Differentiation 165

2. After 48 h of culture, 5 mL of Growth Medium is added to each flask.
3. Following an additional 24 h (72 h from the time of initial plating), the culture

medium is removed, cells are washed with HBSS, and then briefly (1–2 min)
exposed to 3–4 mL of Cell Dissociation Medium, followed by vigorous agitation
of the culture flask.

4. Following dissociation of the cells from the culture flask, an equal volume of
Standard Growth Medium is added to inactivate the trypsin-EDTA.

5. Cells are collected by centrifugation, resuspended in Standard Growth Medium,
and re-plated at a splitting ratio of 1 to 3.

6. Under normal conditions the cells are usually passaged at 3-d intervals.

3.2. Cloning by Limiting Dilution (see Note 4)

Limiting dilution strategies can be used to obtain clones of Rcho-1 tropho-
blast stem cells. Cells are harvested and counted with the aid of a hemacytom-
eter. Cells are distributed into 96-well plates at an estimated concentration of
one-half of a cell per well. The number of cells per well should be verified.
Under standard growth conditions, colonies of cells can be observed within a
week of culture in approx 40–50 wells of the 96-well plate. Colony outgrowths
are then harvested and expanded.

3.3. Freezing, Storage, and Retrieval (see Note 5)

Rcho-1 trophoblast stem cells can be routinely frozen, stored frozen in liq-
uid nitrogen, and retrieved for the establishment of new cultures.

1. Cells are harvested and counted with the aid of a hemacytometer.
2. Cells are equilibrated in Cell Freezing and Storage Medium at a concentration of

1–2 × 106 cells/mL.
3. One milliliter aliquots of the cell suspension are then transferred into 2-mL

cryovials.
4. Cryovials are positioned within a StrataCooler® Cryopreservation Chamber pre-

cooled to 4°C.
5. The Cryopreservation Chamber is transferred to –80°C.
6. After 3 d to 3 wk at –80°C, frozen vials are moved to a liquid nitrogen storage

container, where they can be stored indefinitely.
7. Upon retrieval, frozen aliquots should be rapidly thawed at 37°C, washed once in

Standard Growth Medium, and reseeded into culture plates.

3.4. Method to Monitor Trophoblast Cell Proliferation/Survival (13)
(see Note 6)

1. Cells are harvested and counted with the aid of a hemacytometer.
2. A total of 500 cells per well are transferred in Standard Growth Medium to a

24-well plate.
3. Following cell attachment overnight, the culture medium is replaced and treat-

ments added. Medium is changed as required over the treatment period. Standard
Growth Medium is used as a positive control for maximal growth.
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4. After a maximum of seven days, the wells are rinsed with PBS, and stained with
Crystal Violet Solution (300 µL/well) for 10 min with agitation.

5. Cell cultures are then washed repeatedly in tap water, and allowed to dry.
6. Crystal violet dye is then eluted with ethylene glycol.
7. Cell density can be quantified by measuring absorbance of each eluate at 600 nm.

In this assay, cell number is directly correlated with absorbance of the cellular
eluates.

3.5. Induction of Trophoblast Cell Differentiation (see Notes 7 and 8)

Trophoblast giant cell differentiation is induced by growing Rcho-1 tropho-
blast stem cells to confluence in Standard Growth Medium and then replacing
the medium with differentiating conditions. High cell density and the absence
of mitogens (removal of FBS) facilitate trophoblast giant cell differentiation.

1. Cells are harvested and counted with the aid of a hemacytometer.
2. A total of 1–2 × 106 cells in Standard Growth Medium are plated in a 75 cm2

flask.
3. The cells are fed after 48 h with Standard Growth Medium.
4. After another 24 h, one of two protocols can be used to promote differentiation.
5. Protocol I involves replacing the culture medium with Differentiation Medium

Type I. Cultures are re-fed daily and the appearance of giant cells is evident
within 2–4 d (Fig. 2 ). Differentiation is progressive and differentiated cells main-
tained in culture for up to 3 wk.

6. Protocol II involves replacing the culture medium with Differentiation Medium
Type II. Cultures are re-fed daily for 6 to 8 d and then the cells are returned to
Standard Growth Medium with daily changes for another 6 to 8 d. Trophoblast
giant cells are evident as in Protocol I; however, become more robust in size
during the reintroduction of Standard Growth Medium (Fig. 2).

3.6. Methods to Evaluate Trophoblast Cell Differentiation (see Note 9)

Trophoblast differentiation can be assessed by monitoring changes in cell
morphology/endoreduplication, changes in gene expression, the production of
steroid and polypeptide hormones, and invasiveness.

3.6.2. Morphology/Endoreduplication

Differentiated trophoblast giant cells are easy to recognize and distinguish
from undifferentiated trophoblast stem cells. They are large cells with an en-
larged nucleus and prominent nucleoli. These cells arise by endoreduplication
and their DNA content is polyploid. Nuclear size is proportional to DNA con-
tent. Differentiated trophoblast giant cells can be easily quantified by monitor-
ing nuclear size by image analysis (9) or by monitoring cellular DNA content
by flow cytometry (2).

13_Sahgal_159_178_F 8/29/05, 11:19 AM166



Studying Trophoblast Cell Differentiation 167

3.6.2. Gene Expression

The differentiation status of the Rcho-1 trophoblast stem cells can be rou-
tinely monitored by Northern blotting.

1. Total RNA is extracted from cells using TRIzol reagent, resolved in 1% formal-
dehyde-agarose gels, transferred to nylon membranes, and crosslinked.

2. Blots are probed with α-P32-labeled cDNAs (Tables 2 and 3).
3. cDNA for a housekeeping gene is used to evaluate the integrity and equal loading

of RNA samples (see Note 10).

Fig. 2. Morphology of Rcho-1 trophoblast cells at different stages of differentia-
tion. (A) Proliferative phase, containing primarily trophoblast stem cells; (B) cells
induced to differentiate using Protocol I (withdrawal of the mitogen); (C) cells in-
duced to differentiate using Protocol II (withdrawal of mitogens + reintroduction of
fetal bovine serum [FBS]); (D) development of new trophoblast stem cell colonies
following reintroduction of FBS.
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3.6.3. Hormone Production

Steroid and peptide hormones accumulate in conditioned medium accompa-
nying the differentiation of trophoblast giant cells. Progesterone and andros-
tenedione are the two major steroid products. They can be measured with
commercially available radioimmunoassays (35–37). Production of members
of the prolactin family of polypeptide hormones (placental lactogen-I, placen-
tal lactogen-II, and prolactin-like protein-A) are monitored by Western blot-
ting (34).

3.6.4. Invasion (see Note 11)

The invasive phenotype of trophoblast cells can be assessed by determining
the directional movement of cells through an extracellular matrix (75).

1. Rcho-1 trophoblast stem cells are seeded at 5 × 104 per 3 mL in Standard Growth
Medium on the upper chamber of an extracellular matrix-coated BioCoat Matrigel
Invasion chamber.

2. Cells are incubated at 37°C in a water-jacketed incubator set at 5% CO2.
3. The cultures are continued for various durations.
4. Chambers are then removed and the matrix and cells on the upper surface are

scraped and the membrane fixed and stained with Diff-Quick.
5. Chamber membranes are then excised and placed on slides, overlayed in immer-

sion oil, and cells that invaded and attached to the under surface of the chamber
can be counted using a microscope ocular grid.

3.7. DNA Transfection of Rcho-1 Trophoblast Stem Cells

DNA can be transferred into Rcho-1 trophoblast stem cells using liposome-
mediated procedures. Below is a description of our routine transfection protocol.

1. In a six-well plate, seed 2 × 104 cells per well in 2 mL of Standard Growth Medium.
2. After 2–3 d, the cells are then incubated with a DNA/Lipofectamine mixture

(Lipofectamine reagent 10 µL, DNA construct 2 µg, Opti-MEM culture medium
200 µL) at 37°C for 7 h.

3. Following the incubation the DNA/lipofectamine mixture is removed and the
medium is changed to either Standard Growth Medium or Standard Differentia-
tion Medium.

4. The activity of proteins encoded by the transfected DNA can be monitored 48–60 h
following transfection.

5. Stable DNA transfected Rcho-1 trophoblast stem cell sublines can be generated
through the introduction of DNA plasmids containing cassettes for selectable
genes such as those encoding for neomycin resistance. Effective selection for
neomycin resistance generally requires exposure to geneticin at a concentration
of 250 µg/mL for 2 to 3 wk.
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3.8. Transplantation and In Vivo Maintenance of Rcho-1 Trophoblast
Stem Cells (see Note 12)

The kidney capsule serves as an effective growth environment for Rcho-1
trophoblast stem cells.

1. Cells are harvested from cultures and counted with the aid of a hemacytometer.
2. Cells (1–5 × 106) are transferred beneath the kidney capsule of 4-wk-old female

rats (we routinely use Holtzman Sprague-Dawley rats) in a volume of 25–40 µL
using a 27-gauge needle and 1-mL syringe.

3. The cells grow rapidly and must be harvested after 10–12 d.
4. Harvested transplants can also be minced and transferred beneath the kidney cap-

sule of additional recipient animals.
5. Rcho-1 trophoblast stem cells transplanted beneath the kidney capsule have the

potential to exhibit both endocrine and invasive phenotypes.

4. Notes
1. We routinely use RPMI-1640 culture medium as a base growth medium. Rcho-1

trophoblast stem cells grow vigorously in RPMI-1640 culture medium but some-
times at the cost of poor pH regulation. We compensate for the lack of pH control
by changing the culture medium more frequently (daily) and/or by supplement-
ing the cultures with HEPES (10–20 mM). High humidity is essential for optimal
Rcho-1 trophoblast stem cell growth. A serum-free system has not been defined
for propagating the Rcho-1 trophoblast stem cells. At this juncture the inclusion
of FBS is essential. We routinely use high concentrations (20%) of FBS, which
the cells appear to prefer. The high FBS concentration may also minimize some
of the variabilities associated with different lots of serum.

2. Cell density is a key for the appropriate maintenance and expansion of the Rcho-
1 trophoblast stem cell line. The most common problem in working with Rcho-1
trophoblast stem cells is the desire to grow them to confluence. Confluence and
proliferation are not compatible. As the cells become more dense, they begin to
spontaneously differentiate or die. The differentiating cells have a more flattened
appearance and will ultimately develop into trophoblast giant cells, whereas the
dead cells lift from the surface of the culture plate. In order to prevent spontane-
ous cell death or differentiation, the Rcho-1 trophoblast stem cells must be pas-
saged as recommended.

3. Rcho-1 trophoblast stem cell cultures are heterogeneous. Both proliferative and
differentiated cells can be observed in expanding cultures. Manipulating various
aspects of the culture procedure can influence the cellular composition of the cell
line. Cell composition can influence growth rates and features of differentiation.
Maintaining the cells at higher densities or any type of significant stress (humid-
ity, pH, CO2 deprivation, and so on) can lead to differentiation (giant cell forma-
tion) or cell death, both of which result in an irreversible termination of the
culture. Harvesting the Rcho-1 trophoblast cells following brief treatment with
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trypsin-EDTA results in isolation of a population of cells enriched in stem cells.
This procedure also results in the enrichment of differentiated cells (trophoblast
giant cells) that are more adherent and not removed by brief exposure to the
trypsin-EDTA solution. Harvesting the differentiated cells generally requires
more vigorous dissociation methods such as scraping with a rubber policeman.
Unfortunately, the yield of intact trophoblast giant cells by this technique is not
optimal. Consistency in cell culture practices is extremely important in working
with the Rcho-1 trophoblast stem cell line. Variations in culture densities, pas-
saging methods, and splitting ratios significantly influence the phenotype of the
cell line.

4. Rcho-1 trophoblast stem cells grow well at low density, especially in the pres-
ence of culture medium containing 20% FBS, and clonal lines can be easily
derived. The main concern in isolating clonal lines from Rcho-1 trophoblast
stem cells is obtaining a single cell suspension and preventing cell aggregation
during their dispersal into multi-well plates.

5. Freezing, storage, and retrieval of Rcho-1 trophoblast stem cells require consid-
erable care. In recent years, we have increased the concentration of FBS in the
freezing medium, which seems to improve cell viability at retrieval. We are also
careful to rapidly thaw the cells at 37°C and remove the freezing medium by
centrifugation before culture. If performed well, the cultures are revived within
24 h and ready to passage in another 48 h. Nonetheless, retrieval of cultures from
frozen cell aliquots has been our biggest problem in distributing the Rcho-1 tro-
phoblast stem cells to other laboratories. Because of these problems, we rou-
tinely distribute the cells as live cultures.

6. We have described a simple dye-based colorimetric technique for monitoring
cell proliferation. There are many other strategies that can be used (cell counts,
flow cytometry, and so on). However, it is important to appreciate that a key com-
ponent of differentiation in Rcho-1 trophoblast stem cells is endoreduplication,
e.g., DNA synthesis, without karyokinesis and cytokinesis. Thus, strategies for
monitoring Rcho-1 stem cell proliferation that involve monitoring the incorpora-
tion of a nucleotide or nucleotide analog will not discriminate between DNA
synthesis associated with proliferation and differentiation.

7. One of the experimental advantages of the Rcho-1 trophoblast stem cell line is its
capacity to differentiate. We have developed a couple of protocols for enriching
differentiated trophoblast cells. These involve achieving high cell density and
removal of mitogenic factors. We have the most experience in shifting the cells
to an NCTC 135 basal medium containing HS. Morphological and biochemical
indices of trophoblast giant cell differentiation are evident within a few days.
However, we have noted that the size of the trophoblast giant cells that appear in
these cultures is generally much smaller than those appearing spontaneously in
the expanding cells cultured in FBS. Consequently, we have recently imple-
mented a second protocol for differentiation. The new strategy involves cell
expansion, followed by mitogen withdrawal, and then re-introduction of Stan-
dard Growth Medium. Within a few days large trophoblast giant cells appear
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throughout the cultures (Fig. 2). As these cultures are maintained in Standard
Growth Medium, colonies of stem cells will also begin to appear. Cells in these
colonies are tightly packed and rise above the surface of the plate. If needed, the
stem cell colonies can be removed by brief trypsinization without detachment of
the differentiated trophoblast giant cells. In both protocols, mitogen withdrawal
is the key. In the absence of FBS, some cells differentiate, others die, and some
stem cells apparently become dormant. The enhanced trophoblast giant cell for-
mation following re-introduction of Standard Growth Medium suggests that
endoreduplication is stimulated by factors present in FBS.

8. Under our culture conditions, Rcho-1 trophoblast stem cell differentiation is most
prominently directed toward the trophoblast giant cell lineage. Giant cell forma-
tion proceeds over time and may be accelerated by re-introduction of FBS con-
taining medium. Evidence for differentiation along other trophoblast cell lineages
(Fig. 1; spongiotrophoblast cells, glycogen cells, syncytial trophoblast, and the
specialized invasive trophoblast cells of the metrial gland) is apparent but gener-
ally modest to minimal. This restricted differentiation to trophoblast giant cells is
likely, at least in part, a reflection of culture conditions rather than developmen-
tal capabilities of the Rcho-1 trophoblast stem cells. We may be able to learn
from differentiation strategies developed for studying embryonic stem cells (79).
Other cell lineages can be detected by monitoring the expression of genes or gene
products specific for spongiotrophoblast cells, syncytial trophoblast, and the spe-
cialized invasive trophoblast cells of the metrial gland (Table 4). Glycogen cells
are generally identified by their accumulation of glycogen. Exposure of differen-
tiating cells to dimethylsulfoxide can inhibit trophoblast giant cell differentiation
and reactivate part of the trophoblast stem cell phenotype (Sahgal, N., Canham,
L., and Soares, M. J., unpublished results).

9. Balzarini and colleagues use alkaline phosphatase enzyme activity as a measure
of differentiation of RCHO trophoblast stem cells (22,25). The assay is simple
and can readily be adapted to a multi-well format. We have not utilized the assay
mainly because alkaline phosphatase is known to be expressed in many cell types
and thus does not reflect a specific measure of trophoblast cells.

10. We have utilized an assortment of different housekeeping genes to monitor RNA
integrity and loading efficiency. These have included β-actin, glyceraldehyde-3'-
phosphate dehydrogenase (G3PDH), β-tubulin, and 28S ribosomal RNA. Some
of these, including G3PDH and β-tubulin are sometimes problematic in that their
expression is affected by cell differentiation or the treatments employed.

11. Aspects of the invasive phenotype can also be monitored by determining the ex-
pression of gelatinase B and/or α1 integrin and through the analysis of gelatinase
B activity in conditioned medium by substrate gel electrophoresis (zymography;
see ref. 75).

12. Rcho-1 trophoblast stem cells can be maintained in vivo by transplantation into
various host tissues. We have routinely used the kidney capsule but these cells
have also been successfully transplanted to other sites, including the liver, cere-
bral ventricles, lungs, testes, and uteri of rats (7,10,11,85–92). In vivo transplan-
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tation of the Rcho-1 trophoblast cells has been effectively used to elevate circu-
lating levels of lactogenic hormones. The predominant lactogen expressed by the
transplants appears to be PL-I. Lactogenic and luteotrophic actions on the mam-
mary glands and ovary, respectively, represent effective indicators of systemic
action of the products of the transplants. Please be aware that Rcho-1 trophoblast
cells are potentially capable of producing other peptide and steroid hormones;
thus the physiological consequences of trophoblast stem cell transplantation may
be complex.
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